
Bulletin of Entomological Research (1999) 89, 217–224 217

A test of a pattern recognition system for
identification of spiders

M.T. Do1, J.M. Harp2, and K.C. Norris3*
1Department of Computer Sciences, University of Tennessee, and Oak
Ridge National Laboratory, Life Sciences Division: 2Graduate School of

Biomedical Sciences, University of Tennessee/Oak Ridge National
Laboratory: 3Department of Ecology and Evolutionary Biology, 569

Dabney Hall, University of Tennessee, Knoxville, TN 37996-1610, USA

Abstract

Growing interest in biodiversity and conservation has increased the demand for
accurate and consistent identification of arthropods. Unfortunately, professional
taxonomists are already overburdened and underfunded and their numbers are
not increasing with significant speed to meet the demand. In an effort to bridge the
gap between professional taxonomists and non-specialists by making the results of
taxonomic research more accessible, we present a partially automated pattern
recognition system utilizing artificial neural networks (ANNs). Various artificial
neural networks were trained to identify spider species using only digital images
of female genitalia, from which key shape information had been extracted by
wavelet transform. Three different sized networks were evaluated based on their
ability to discriminate a test set of six species to either the genus or the species
level. The species represented three genera of the wolf spiders (Araneae:
Lycosidae). The largest network achieved the highest accuracy, identifying
specimens to the correct genus 100% of the time and to the correct species an
average of 81% of the time. In addition, the networks were most accurate when
identifying specimens in a hierarchical system, first to genus and then to species.
This test system was surprisingly accurate considering the small size of our
training set.

Introduction

Physicist and Nobel laureate, Richard Feynman, once
said that knowing the scientific name of an organism tells
you only the name and nothing else (NOVA, 1975). Though
literally true, the scientific name is the handle by which all
known information regarding the species can be accessed.
The scientific name is also the common ‘currency’ in
biodiversity studies. An incorrect identification can be
disastrous (see Davis, 1995; Miller & Rossman, 1995).

Given the need for making accurate identifications, we
find that there are two major obstacles. The first is a general
lack of funding and personnel for doing taxonomic research
to properly classify and describe the vast diversity of

organisms. This problem has been comprehensively
documented (Systematics Agenda 2000, 1994). The second
obstacle to accurate identifications is the difficulty involved
in becoming proficient at recognizing arachnids and other
arthropods at the species level. Species identification is a
daunting task for the non-specialist and the results are often
disappointing and inaccurate. The cost of acquiring
proficiency is high and, for the non-specialist, the long-term
benefit is low. 

A partial solution to the problem, which would serve
both to alleviate the time demands on taxonomists and to
make specimen identification easier and more accurate for
the non-specialist, is to partially automate the process. We
present a computerized pattern recognition system that,
though potentially useful to the systematist, is designed to
make the results of taxonomic research available to workers
in disciplines that require identification of collected
specimens. We have chosen artificial neural networks as our
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pattern recognition tool. Neural networks are programming
algorithms which simulate the structure of the brain and the
processing of information therein (see Boddy et al. (1990) for
an introduction to neural networks). Neural networks have
been shown to be remarkably apt at learning. They are also
capable of detecting subtle differences between similar
objects. Once trained, a network can classify objects (e.g.
individuals) that it has never encountered before as long as
the group they belong to (e.g. genus or species) was part of
the training process. It can also be trained to identify
unknown objects as such. After the training process the
network is time efficient, making rapid identifications while
using insignificant computer time and resources. 

One of the more commonly known applications of neural
network technology comes from the field of forensic science.
Finger-print analysis technology developed by NIST
(National Institute of Standards and Technology) uses a
probabilistic neural network to look for similarities in
location of whorls and curves in order to determine whether
an unknown print is the same as any it has been previously
shown. This is a simpler procedure than training a network
to identify an organism to the species level, since there is
much greater variability between two individuals of the
same species than two fingerprints from the same
individual. Handwriting analysis provides a more
reasonable comparison, as handwriting varies from
signature to signature for the same person. 

The possibility of using computer-aided identification
systems in biodiversity studies has recently been reviewed
by Edwards & Morse (1995) and Weeks & Gaston (1997).
Concerned primarily with invertebrate identification, Weeks
& Gaston (1997) suggest that multi-access keys, or
something similar, might be useful for identification to
higher taxonomic levels, but that species identification could
be better attained using image analysis and/or neural
networks. They review the techniques being developed and
the opportunities and limitations of each. 

Microbiologists, marine biologists and entomologists
have been working on ways to use this technology to
differentiate species of bacteria (Bungay & Bungay, 1991;
Rataj & Schindler, 1991), classify human cell types
(Moallemi, 1991), identify phytoplankton species (Simpson
et al., 1992; Boddy et al., 1994; Wilkins et al., 1996), and
discriminate between closely related species of ichneumonid
wasps (Yu et al., 1992; Weeks et al., 1997). Weeks et al. (1997)
achieved an identification accuracy of 94% by using
principal components analysis to distinguish five species of
ichneumonid wasp using information derived from images
of wing venation. A disadvantage of this system is its
limitation to one sort of information input at a time (i.e.
wing morphology). With the exception of the wasp
identification, all of these studies made use of neural
networks to discriminate visually between groups.

This study is the first attempt that we know of to use
neural networks to identify macroscopic organisms. We will
demonstrate that this system can classify spider individuals
to genus and to species based only on digital images of the
ventral view of the female epigyna. In this preliminary
study, the training and testing sets are small and the neural
networks are required to make identifications based only on
single photomicrographs of each test individual. A human
making the same identifications would have access to much
larger quantities of information. More information could be
incorporated into the system, but we hope to demonstrate

the utility of this method by showing its performance under
such minimal conditions.

Materials and methods

The data

Two species from each of three different genera of the
family Lycosidae were used in the training sessions. The
species were: Arctosa rubicunda (Keyserling), Arctosa emertoni
Gertsch, Pardosa groenlandica (Thorell), Pardosa dromaea
(Thorell), Alopecosa aculeata (Clerck), and Alopecosa kochii
(Keyserling) (see Dondale & Redner, 1990). These specimens
allowed us to test the network’s ability to classify
individuals in three ways: to genus, to species, and to
species within genus (i.e. the program first classifies to genus
and then to species for each specimen). 

Image acquisition

Due to variability in the condition of the epigyna and the
quality of the resulting images, between 14 and 21
individuals of each species were photographed. The epigyna
were photographed in 70% ethanol using an Olympus
SZX70 microscope equipped with a Sony CCD video
camera. Images from the CCD camera were captured using a
SnappyTM and recorded in Tag Image Format (TIF). The
preparation of each specimen for imaging involved aligning
the plate of the epigynum approximately normal to the
viewing axis of the microscope through the use of forceps
and cotton padding. All specimens were illuminated using a
fibre optic light source.

Image pre-processing

The images were cropped to include only the epigynal
boundaries. The two dimensional wavelet transform,
described below, requires the input image to be a square
with dimension 2j 3 2j. As a consequence, the image was
scaled down to a dimension of 1283128 pixels. Beyond this
routine processing, no attempt was made to scale the images
to account for overall body size. An example of a cropped
original image is shown in fig. 1A. 

Wavelet transforms

Neural networks vary in the amount of information they
are designed to receive. In general, a network will have n
inputs, corresponding to n numerical values. If n is too large,
one of two problems may arise; the computer resources
required may be excessive, or the network may lose the
ability to generalize when discriminating images unseen in
the training set. We found 256 inputs to be the maximum
feasible in this study. Thus the input data had to be tailored
to the size of the input layer. In this case the input was an
image, so one option was to input the greyscale values of
each pixel. To do this, the image would have to be reduced
to the appropriate number of pixels. For a network with 256
inputs, our maximum, this would mean an image of 16316
pixels. Such an image contains very little information about
the shape of the epigynum, which we know is the most
useful information when discriminating species. Therefore,
what was needed was a way to decrease selectively the
information contained in the original high-resolution image
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down to a maximum of 256 values, such that less useful
details such as spines and hairs were eliminated while shape
information (to allow species identification) was maintained.
This was accomplished using a type of mathematical
transform called wavelet transform (Graps, 1995). 

Wavelet transforms are similar to the more commonly
encountered Fourier transform. They are an iterative
procedure in which an image is successively reduced to a
coarser version of itself, through the removal of high
frequency information contained in wavelet coefficients
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Fig. 1. (A) An epigynum as viewed on the monitor through the CCD
camera. (B) An epigynum after wavelet transformation illustrating the
loss of high resolution detail with the maintenance of gross shape
information.

https://doi.org/10.1017/S0007485399000334 Published online by Cambridge University Press

https://doi.org/10.1017/S0007485399000334


(sometimes referred to as detail coefficients). These
coefficients are parameters that modify the shape of a pre-
determined function, called a wavelet. The particular
wavelet function chosen for this work was the ‘Daubechies
4’, based on the success of a previous application of neural
nets to static signature analysis (McCormack, 1994). At
each iteration, the image is partitioned into one vector
space containing the low frequency information (low
resolution) and three vector spaces containing the higher
frequency information. At this point, each vector space
contains many wavelet coefficients. In the next iteration,
the low frequency vector space is itself partitioned into one
low, and three high frequency vector spaces (see fig. 2).
Through this procedure, more and more of the high
frequency information is removed until, finally, all that is
left are the four vector spaces, each with a single
coefficient. The original, high resolution image can be
reconstructed by successively re-applying the high
frequency data represented by the wavelet coefficients
contained in the higher frequency vector spaces to the
lower frequency information contained in the low
frequency vector spaces. Of course, when the image is
reduced to only a 434 matrix of wavelet coefficients, it will
be considerably blurred and barely recognizable. Figure 1B
shows the image from fig. 1A, after wavelet transform
followed by reconstruction using only the coefficients from
the later iterations. The transformed image, while
containing as many pixels as the original, shows a loss of
high resolution detail. The gross shape of the epigynum,
however, is still evident. The input into the network
actually consists of the remaining wavelet coefficients
which could be used to reconstruct the image. 

As mentioned above, the set of coefficients
corresponding to each iteration is called a vector space.
These vector spaces are numbered as follows: V0 is the
single wavelet coefficient to which the image is reduced,
plus its three detail coefficients; V1 is the four values of V0,
plus the set of 12 detail coefficients that would be applied
to the four pixels of V0 after reconstruction; V2 is the 16
values of V1, plus the corresponding 48 detail coefficients;
and so on (see fig. 2). Thus, for our smallest ANN, the
SANN (16 inputs), we use the coefficients from V1, for the
medium sized ANN, the MANN (64 inputs), we use V2,
and for our largest ANN, the LANN (256 inputs), we use
V3. The larger networks get input from detail coefficients
that correspond to finer resolution, but none of our
networks get the finest detail from the original image,
which has 1283128 = 16383 pixels and would require 
V5. 

Image classification

Artificial neural network structure

An artificial neural network (ANN) is a computing
algorithm based on a simplistic model of the brain or,
perhaps more accurately, a ganglion. The massively
parallel architecture of the ANN consists of multiple layers
of simple computing elements with many interconnections
between the layers. The computing elements are
functionally analogous to neurons. They receive signals
and in turn transmit a signal which is a function of the
inputs. The function by which the inputs are evaluated
may be a simple logic gate but more generally involves

summation of weighted input signals. A threshold function
is then applied to the weighted inputs to determine the
output of the neuron. A simplified ANN architecture is
presented in fig. 3. This is a fully connected three layer
network.

The initial architectures of our ANNs were established
according to the number of input neurons and the number
of classifications that the program was being designed to
distinguish. Each initial ANN consisted of a layer of input
neurons and a layer of output neurons, fully
interconnected by random initial weights. Each input layer
neuron corresponded to a wavelet coefficient, which
represented the detail contained in a set of pixels. Each
output neuron was assigned to a genus or species that we
were attempting to identify. Separate ANNs were
developed and tested with 16, 64, and 256 inputs
(corresponding to different amounts of detail in the
images) and three, six, or two output neurons
(corresponding to identification to genus, species, or
species within genus). These last ANNs, with only two
output neurons, could then be used to evaluate the ability
of the pattern recognition system to identify specimens first
to genus, then to species within a genus – the hierarchical
approach. Other ANNs were developed with six output
nodes and trained using the entire set of species in the
three genera. These ANNs were used to evaluate the
performance of the ANN in identifying species without
regard to genus classification – the nonhierarchical
approach. 

After acquiring and processing the images from all
samples, the set of images was divided into a training set and
a testing set. The composition of the training set is shown in
table 1. Subsets of the entire testing set were made to test
ANNs at different hierarchical levels as described above.
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Fig. 2. A wavelet coefficient layout diagram for an image that
has undergone wavelet transformation. The higher resolution
information is represented by the wavelet coefficients at the
higher level vector spaces (toward the right side of the figure).
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The training cycle

The following is a generalized description of the steps
necessary to train and test any ANN, along with details
specific to this study. Training involves effort in three phases:
(i) assembly of the collection of object classes (in our case,
spider species) by a taxonomist; (ii) construction of the
training data set and processing of the data into a form
capable of input into the neural network (digital images in
this study); and (iii) the actual training of the neural network
to recognize the object classes based on the training data set.
Training continues until the desired level of accuracy is
attained. It is at this point that the network is tested with
previously unseen individuals to assess its ability to classify
them into appropriate groups based on what it has learned
from the training process (i.e. the network’s ability to
generalize). The idea is to ‘teach’ the ANN to set the output
neuron, assigned to a given genus or species, to its
maximum value of ‘1.0’ when it sees a pattern indicative of
that genus or species and set all other output neurons to a
minimum value of ‘0.0’. In practice, the ANN will set the
output neurons to an intermediate value depending on the
certainty of its identification (e.g. an output of 0.9999
indicates certainty while 0.6 indicates less certainty). The
training process introduces new neurons in a hidden layer
between the input and output layers. These act as feature
detectors to look for a specific pattern unique to a given
genus or species. The resulting output vector is then
evaluated against the target function to compute an error.

This error is then used to modify the weights in the
connections. An entire training cycle is referred to as an
epoch. Training stops when the error becomes sufficiently
small (in our case 0.001). The number of epochs required to
reach the target error varies considerably (tens to many
thousands) depending on the ease/difficulty in
discriminating between the output groups and the amount
and resolution of data being used. In this work, all ANNs
were trained over 300 epochs and adjustable parameters
such as learning rate and momentum were held constant.

Several algorithms exist to train an ANN, each of which
possesses certain strengths and weaknesses. We used
Cascade correlation in conjunction with quick propagation
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Fig. 3. A simplified three layer, fully connected artificial neural network showing the input of a
hypothetical image containing four wavelet coefficients (C1 through C4), encapsulating the
information of 16 pixels. The number of nodes in the input and output layers are determined by
the number of inputs to the network and the number of classification options, respectively.

Table 1. Composition of the training sets used to train the
artificial neural networks.

Training set Genus Species N

Alopecosa A. aculeata 11
A. kochii 7

Lycosidae Pardosa P. groenlandica 8
P. dromaea 10

Arctosa A. rubicunda 8
A. emertoni 9

The training sets consisted of digitized images of epigyna taken
from a number, N, of individual specimens.
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(Fahlman, 1988, 1991). Cascade correlation adds hidden
layer neurons one at a time throughout training. This
allowed for quick learning and the ability to generate a near
minimal ANN consisting of only those feature detectors that
are needed. Minimizing computational time and resources is
essential if this technology is to be widely accessible. 

The time required for training should not be overly long.
However, since the performance of the ANN is very fast
after training, sufficient attention should be paid to the
training process as to make the final structure as accurate as
possible. At present, training the ANN requires considerable
attention from the human operator. As we gain more
experience with the behaviour of the algorithms when
applied to spiders, the process should become standardized.

Testing

For each size of network (SANN, MANN, LANN) and
for each level of identification (genus, species alone, and
species within genus), inputs were taken from subsets of a
testing set consisting of images which the network had not
seen before. The composition of the testing set can be read
from tables 2–4. Specimens from unknown species or genera
were not presented to the network as part of this study. 

Results

Recognition of epigyna at the genus level 

Training was performed over the entire Lycosidae
training set (17–18 individuals per genus). The results of
testing runs on the trained ANNs are given in table 2. Both
the MANN and the LANN were 100% accurate in their iden-
tifications to genus, while the SANN had an average
accuracy level of 90%. Therefore, it is apparent that the
system was more than adequate for distinguishing spiders
to genus based solely on shape features of the female
epigynum. This was true even given the small size of the
training set.

Recognition of epigyna at the species level

The non-hierarchical approach

Only the MANN and LANN networks were used for this
experiment. The ANNs were trained over the entire
Lycosidae training set. The results of testing runs on this
series of ANNs are given in table 3. The overall accuracy
level for identifications to species for the MANN and LANN
were 69% and 73%, respectively. The overall results suggest
that the LANN performed better than the MANN although
some peculiarities exist in the results. The ability of the
LANN to identify Alopecosa species was considerably better
than that of the MANN but the performance of the LANN
actually fell below that of the MANN for A. rubicunda. We
are unable to explain these discrepancies except to point out
that the training set was quite small (only 7–11 individuals
per species). It should be noted that the probability of
correctly identifying, by chance, a specimen taken at random
from a set containing six species is only 16.7%. 

The hierarchical approach

The SANN, MANN, and LANN were trained over the
appropriate subset of the Lycosidae training set. The results

of testing runs for all three sets are given in table 4. The
overall accuracy levels for the SANN ranged from 63% to
75%, from 69% to 100% for the MANN and from 74% to 88%
for the LANN. Here again, the overall performance of the
ANN improved with increasing number of included vector
spaces represented in the input vectors. In this case, the
performance of the LANN was less than that of the MANN
for A. kochii and the greatest improvement with size of ANN
was seen in the Arctosa ANNs. It is clear that the SANN was
inadequate but these results suggest that there may a point
at which increasing the size of the ANN will not significantly
improve performance.

Discussion

The performance of the trained ANNs in the testing runs
demonstrated that the pattern recognition system was
capable of identifying lycosids with an accuracy level of
100% to genus and an average of 81% to species. This level
of accuracy was surprising given the small size of the
training set used in this study (7–11 individuals per species)
and the limited amount of information on which the
identification system was based. We feel that the size of this
training set was inadequate to assess fully the abilities of the
pattern recognition system; this was designed solely as a
proof-of-principle study to evaluate the feasibility of using
such pattern recognition systems for species identification in
spiders. Increased accuracy could be attained simply by
increasing the size of the training set (Simpson et al., 1992).

222 M.T. Do et al.

Table 2. Testing results for the artificial neural networks trained
using the full Lycosidae training set.

Taxon N SANN (%) MANN (%) LANN (%)

Alopecosa 16 100 100 100
Pardosa 19 74 100 100
Arctosa 16 100 100 100
Overall 51 90 100 100

The ANNs possessed three output neurons corresponding to the
three genera in the training set and varied in the number of
vector spaces included so that the small ANN (SANN)
contained 16 input neurons, the medium ANN (MANN)
contained 64 and the large ANN (LANN) contained 256 input
neurons. The data represent the percentage of correct responses
from the ANN out of the total number, N, of unknowns
presented to the trained ANN.

Table 3. Non-hierarchical testing results for the artificial neural
networks (MANN and LANN, only) trained on the Lycosidae
training set.

Taxon N MANN (%) LANN(%)

Alopecosa aculeata 10 70 80
A. kochii 7 57 71
Pardosa groenlandica 9 44 44
P. dromaea 9 89 89
Arctosa rubicunda 9 67 56
A. emertoni 9 86 86
Overall 52 69 73

The data represent the percentage of correct responses out of the
total number, N, of unknowns presented to the trained ANN.
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We also limited the information input to shape features of
the female epigynum. A fully developed system could
incorporate more types of information (e.g. carapace
length/width, locality, distinguishing markings, etc.) which
would again increase accuracy, particularly when species
have very similar genitalia. In addition, the use of higher
quality cameras, microscopes, etc. during the training
process might enhance precision. However, the accuracy
obtained through the use of such accessible equipment as
used in this study further demonstrates the potential of this
system and the feasibility of its use by the general scientific
community. Once trained, the neural network software
could run on most personal computers.

Based on the comparative performances of the small
(SANN) and large (LANN) networks, it was apparent that
the SANN did not incorporate adequate data to distinguish
spider species. Although it is clear that future ANNs should
be at least the size of the MANN (medium sized with 64
input neurons), it is not clear whether they will necessarily
always perform better with larger amounts of input neurons.
The data also indicated that a hierarchical ANN was
preferable to a non-hierarchical ANN. In other words, higher
accuracy was attained when the network first classified the
specimen to genus and then to species as opposed to going
straight to species (81% vs. 73%, respectively). We would
expect this to be true as long as the higher organizational
group (in this case, the genus) is well defined with respect to
the characters examined (in this case, the epigyna). Boddy et
al. (1994) found that the hierarchical approach was not as
good when identifying phytoplankton because the
classification scheme used was not compatible with the
characters fed into the network. Some species within one
group resembled those in another group enough that they
were always initially misclassified and therefore always
misidentified. In the identification of spiders using genitalia,
we speculate that although it would be beneficial to use the
hierarchical approach to the level of genus, it would not be
acceptable to have the network classify to the family level
since these classifications are often made based on other
characteristics. A separate network for each family may be
the best option, since identification to family is more easily
accomplished by the non-specialist. In future work, we will
explore these options by testing the network on more than
one family group. 

In this study, we chose to use the epigynum as a test case.
The essentially two dimensional nature of the ventral view
of the structure served to simplify technical aspects of the

work. We also used a subset of spiders which can be readily
identified based on external genitalia; this will not always be
the case, as some species can only be identified based on
internal genitalia or other characteristics. Nonetheless, this
system has the potential to read any visual input and
artificial neural networks can be designed and trained
specifically for any group. The next step in the development
process will be to make an ANN capable of identifying
species on the basis of a single view of the adult male
spider’s genitalia, the palpus. Future development will
involve the training of an ANN using multiple views of the
adult male palpus or female epigynum for those species
which require this information for accurate identification. It
is proposed that the ANN will avoid the need of
reconstructing a three-dimensional image of these complex
structures simply by learning to recognize a set of two, two-
dimensional images taken at arbitrary angles. This
technology is not limited to arachnology. The methods being
developed here will transfer to any other taxa for which
visual traits are used to distinguish genera or species (e.g.
wasps (wing venation), scale insects (scales), many other
insect groups (genitalia)).

We have undertaken this study as a first step toward
making routine, accurate species identification of spiders
accessible. We suggest that the ANN as a pattern recognition
system will be useful in making the results of taxonomic
research widely available by encapsulating the subjective
impression of shape, and variability in shape, and making
that information available to any user who may be viewing a
structure for the first time. Because the network is trained on
multiple individuals of each species, it has the advantage of
incorporating intraspecific variation. Obviously, this system
must be tested on a much larger set of species before we will
know for sure how well it will perform as a tool in
biodiversity studies. If the system continues to perform
adequately when processing larger numbers of genera and
species and/or different kinds of visual data, we suggest that
these systems could become one end product of taxonomic
research. Databases could incorporate artificial neural
networks to make taxonomic knowledge available to anyone
who could benefit from the ability to make accurate identifi-
cations of genera or species. At the very least, these systems
could be used in biological monitoring programmes where
the ANN could be trained with the initial species collected at
the site of interest. All subsequent collections would then at
least be ‘standardized’ to the original, regardless of changes
in taxonomic nomenclature and/or personnel. 
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Table 4. Hierarchical testing results for the three artificial neural networks using training sets
containing only specimens within a single genus.

Training set Taxon N SANN (%) MANN (%) LANN (%)

Pardosa P. groenlandica 10 40 50 50
P. dromaea 9 89 100 100
Overall 19 63 74 74

Arctosa A. rubicunda 9 56 56 78
A. emertoni 7 86 86 86
Overall 16 63 69 81

Alopecosa A. aculeata 8 75 100 100
A. kochii 8 75 100 75
Overall 16 75 100 88

The data represent the percentage of correct responses out of the total number, N, of unknowns
presented to the trained ANN.
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We should emphasize that the methods used in this work
cannot supplant the role of the taxonomist. Pattern
recognition systems are only useful for encapsulating the
results of taxonomic investigations and are not capable of
independently ordering or explaining organic diversity. The
ANN is a system which can simulate learning and make use
of that learning. But, one should bear in mind that the
software can only learn what it is presented during the
training process. Also, the ANN cannot replace the revision
as an end product of taxonomic investigation. What we have
done here is to address the limitation of the revision as a
vehicle for making the results of taxonomic investigation
accessible to the end user. By freeing taxonomists from the
burden of identifying collections of known species sent to
them by other workers, they will have more time for the
most important aspect of their work – description and
revision of species and species groups.
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